Search results for "General theorem"
showing 2 items of 2 documents
Iterationsverfahren höherer Ordnung in Banach-Räumen
1969
The Newton process for operator equations in say a linear normed complete space converges under certain hypothesis about the Frechet-derivatives of the operator with at least the order two. There are different ways to improve this Newton process. For instance you obtain a process of order three if you add a correction element containing the second Frechet-derivative of the operator [1]. In the following note we will generalize this idea. In a recursive manner -- by adding higher derivatives -- we will construct iterative processes of any orderk (k > 1). A general theorem due toCollatz provides us error estimates for this processes. Last we will illustrate the processes by several examples.
On a Theorem of Greuel and Steenbrink
2017
A famous theorem of Greuel and Steenbrink states that the first Betti number of the Milnor fibre of a smoothing of a normal surface singularity vanishes. In this paper we prove a general theorem on the first Betti number of a smoothing that implies an analogous result for weakly normal singularities.